Accurate and automatic segmentation of basal ganglia from magnetic resonance (MR) images is important for diagnosis and treatment of various brain disorders. However, the basal ganglia segmentation is a challenging task because of the class imbalance and the unclear boundaries among basal ganglia anatomical structures. Thus, we aim to present an encoder-decoder convolutional neural network (CNN)-based method for improved segmentation of basal ganglia by focusing on skip connections that determine the segmentation performance of encoder-decoder CNNs. We also aim to reveal the effect of skip connections on the segmentation of basal ganglia with unclear boundaries. We used the encoder-decoder CNNs with the following five patterns of skip connections: without skip connection, with full-resolution horizontal skip connection, with horizontal skip connections, with vertical skip connections, and with crossover-typed skip connections (the proposed method). We compared and evaluated the performance of the CNNs in the experiment of basal ganglia segmentation using T1-weighted MR brain images of 79 patients. The experimental results showed that the skip connections at each scale level help CNNs to acquire multi-scale image features, the vertical skip connections contribute on acquiring finer image features for segmentation of smaller anatomical structures with more blurred boundaries, and the crossover-typed skip connections, a combination of horizontal and vertical skip connections, provided better segmentation accuracy. This paper investigated the effect of skip connections on the basal ganglia segmentation and revealed the crossover-typed skip connections might be effective for improving the segmentation of basal ganglia with the class imbalance and the unclear boundaries.