While pair-rule patterning has been observed in most insects examined, the orthologs of Drosophila pair-rule genes have shown divergent roles in insect segmentation. In the beetle Tribolium castaneum, while odd-skipped (Tc-odd) was expressed as a series of pair-rule stripes, RNAi-mediated knockdown of Tc-odd (Tc-oddRNAi) resulted in severely truncated, almost asegmental phenotypes rather than the classical pair-rule phenotypes observed in germbands and larval cuticles. However, considering that most segments arise later in germband stages of Tribolium development, the roles of Tc-odd in segmentation of growing germbands could not be analyzed properly in the truncated Tc-oddRNAi germbands. Here, we investigated the segmentation function of Tc-odd in germband stages of Tribolium development by analyzing Tc-oddRNAi embryos that resumed germband extension. In the larval cuticles of Tc-oddRNAi embryos, normal mandibular and maxillary and loss of the labial segments were consistent in the head, whereas a broad range of segmentation defects including loss or fusion of thoracic and/or abdominal segments was observed in the trunk. Interestingly, a group of Tc-oddRNAi germbands showed pair-rule-like defects in the segmental stripes of the segment-polarity genes, engrailed, hedgehog, or wingless, in the abdominal regions. While the pair-rule genes even-skipped, runt, odd, and paired were misregulated in the growing Tc-oddRNAi germbands, paired expression required for odd-numbered segment formation was largely abolished, which might cause the pair-rule-like defects. Taken together, these findings suggest that Tc-odd can function as a pair-rule gene in the germband stages of Tribolium development.