AbstractAgriculture and climate change are inextricably linked in various aspects. Droughts have become more frequent as a result of climate change, having a significant impact on crop productivity. As a result, the current study investigated the effect of seed priming with natural plant extract and biosynthesized nano plant extract as an environmentally friendly tool for mitigating the drought effect on wheat as an economic crop. The study investigates the biosynthesis of Ag-nano particles from extracts of Marrubium alysson and Torilis arvensis. The UV–Vis spectrophotometer was used to characterize the biosynthesized AgNPs. Wheat grains were primed with Marrubium alysson and Torilis arvensis, along with their nanoextracts, and grown in different water regimes (100%, 60% and 40% field capacity), as well as hydropriming. Leaves were collected to determine the photosynthetic pigments, phenolics, flavonoids, CAT, GPX, H2O2, MDA, soluble sugars, and soluble proteins. In comparison with hydropriming seeds, the study discovered that natural and nano extracts significantly increased the CAT and GPX, as well as soluble proteins. Phenolics, flavonoids, soluble sugars, H2O2, and MDA content all decreased significantly, but pigment content remained unchanged. The study believed that priming wheat with natural and nano extracts, improved drought tolerance through the use of their metabolites, which included soluble sugars, phenolics, and flavonoids, accumulating in other metabolites like lignin, starch, and flavolignan to increase plant tolerance and reduce oxidative damage. Furthermore, nano extracts of Torilis arvensis and Marrubium alysson may be more effective than plant extracts since they separate from each other in PCA analysis.
Read full abstract