Durum wheat (T. turgidum L.) is threatened by the appearance of new virulent races of leaf rust, caused by Puccinia triticina, in recent years. This study was conducted to determine the leaf rust resistance in a modern Canadian durum cultivar Strongfield. Six populations derived from crosses of Strongfield with six tetraploid wheat lines, respectively, were tested at seedling plant stage with different P. triticina races. Two of the populations were evaluated for adult plant leaf rust infection in Canada and Mexico. A stepwise regression joint linkage QTL mapping and analysis by MapQTL were performed. Strongfield contributed the majority of QTL detected, contributing seven QTL detected in field tests, and eight QTL conditioning seedling resistance. A 1B QTL, QLr-Spa-1B.1, from Strongfield had a significant effect in both Canadian and Mexican field tests, and corresponded with Lr46/Yr29. The remaining field QTL were found in only the Canadian or the Mexican environment, not both. The QTL from Strongfield on 3A, QLr-Spa-3A, conferred seedling resistance to all races tested and had a significant effect in the field in Canada. This is the first report of the QLr-Spa-3A and Lr46/Yr29 as key components of the genetic resistance in Canadian durum wheat. KASP markers were developed to detect the QLr-Spa-3A for use in marker assisted leaf rust resistance breeding. The susceptible parental lines contributed QTL on 1A, 2B and 5B that were effective in Mexican field tests that may be good targets to integrate into modern durum varieties to improve resistance to new durum virulent races.