Seed colors and color patterns are critical for the survival of wild plants and the consumer appeal of crops. In common bean, a major global staple, these patterns are also essential in determining market classes, yet the genetic and environmental control of many pigmentation patterns remains unresolved. In this study, we genetically mapped variation for several important seed pattern loci, including T, Bip, phbw, and Z, which co-segregated with candidate genes PvTTG1, PvMYC1, PvTT8, and PvTT2, respectively. Proteins encoded by these genes are predicted to work together in MYB-bHLH-WD40 (MBW) complexes, propagating flavonoid biosynthesis across the seed coat as observed in Arabidopsis. Whole-genome sequencing of 37 accessions identified mutations, including seven unique parallel mutations in T (PvTTG1) and non-synonymous SNPs in highly conserved residues in bipana (PvMYC1) and z (PvTT2). A 612 bp intron deletion in phbw (PvTT8) eliminated motifs conserved since the Papilionoideae origin and corresponded to a 20-fold reduction in transcript abundance. In multi-location field trials of seven varieties with partial seed coat pigmentation patterning, the pigmented seed coat area correlated positively with ambient temperature, with up to 11-fold increases in the pigmented area from the coolest to the warmest environments. In controlled growth chamber conditions, an increase of 4°C was sufficient to cause pigmentation on an average additional 21% of the seed coat area. Our results shed light on key steps of flavonoid biosynthesis in common bean. They will inform breeding efforts for seed coat color/patterning to improve consumer appeal in this nutritious staple crop.
Read full abstract