The erosion of the seabed in front of shoreline structures due to wave action is a critical concern. While previous models accurately depict fluid and sediment interactions, they each have limitations and require significant computational resources, especially when simulating complex processes. This study proposed and validated a numerical model for simulating wave-induced sediment transport by integrating three key components: (1) a main solver based on large eddy simulation that includes the porosity of permeable materials, (2) a volume of fluid module to track the air–water surface, and (3) a sediment transport module that includes both bedload and suspended load to compute sediment concentrations and seabed changes. The model was validated against previously published experimental data, demonstrating its accuracy in capturing both wave motion and seabed profile changes induced by sediment transport. Furthermore, the numerical model was applied to study the effects of varying breakwater slopes on sediment seabed profile changes. The results show that steeper breaker slopes led to more concentrated wave energy near the structure, resulting in deeper scouring and higher sediment displacement. These results indicate that the proposed model is a valuable tool for coastal engineering applications, particularly for designing breakwaters, to mitigate sediment erosion and improve sediment stability.
Read full abstract