The present study investigates the use of combined methods of optical and acoustic sensors, in collaboration with direct in situ measurements, for the calibration and validation of a model transforming acoustic backscatter intensity series into suspended particulate matter (SPM) concentration datasets. The model follows previously elaborated techniques, placing particular attention to the parameterization of the acoustic absorption index as a function of water physical properties. Results were obtained from the annual deployment (during 2007-2008) of an upward-facing acoustic Doppler current profiler (ADCP) (307 kHz), equipped with a Wave Array, and an optical backscatter sensor (OBS), at the bottom of Thassos Passage near Nestos River plume (Thracian Sea, Northern Greece). The OBS was calibrated through linear regression, using 2007 and 2012 field sampling data, exhibiting an error of 13-14 % due to chlorophyll presence. The ADCP signal was calibrated through simultaneous measurements of backscatter intensity and turbidity profiles. Harmonic analysis on the model-produced SPM concentrations explained the tidal influence on their variability, especially during the summer. Empirical orthogonal functions analysis revealed the impact of waves and wave-induced currents on SPM variability. Finally, Nestos River sediment load was found uncorrelated to the SPM change in Thassos Passage, due to the dispersal and sediment deposition near the river mouth.