This study investigated sediment-bound magnetic properties and selected trace elements level in the karst ditch wetland, Caohai National Nature Reserve, Guizhou Province, China. Sediment-bound magnetic signals were quantified using low-frequency mass magnetic susceptibility (χLF), anhysteretic remanent magnetization susceptibility (χARM), saturation isothermal remanent magnetization (SIRM), and percentage frequency-dependent susceptibility (χfd%). Concentrations of Cd, Cr, Sb and Zn were determined using inductively coupled plasma mass spectrometry. Sediment χLF, χARM, SIRM, and χfd% were higher than those of bedrocks and mainly altered by the pedogenic processes. The estimated χfd% ranged from 6.15 % to 14.62 % and reflected the magnetic grain sizes were largely concentrated in the range of superparamagnetic particles. The elevated concentrations of sediment-bound Cd, Cr, Sb, and Zn supported the significant contribution of the anthropogenic sources in the karst ditch wetlands. The weak relationship between magnetic signals and selected trace elements (p < 0.05) suggested the occurrence of few sediment-bound iron-containing minerals associated with selected trace elements. These results indicated that a minor contribution of anthropogenic sources of selected trace elements to the elevated sediment magnetic signals in the karst ditch wetlands.