Multiplayer online video games are a multibillion-dollar industry, to which widespread cheating presents a significant threat. Game designers compromise on game security to meet demanding performance targets, but reduced security increases the risk of potential malicious exploitation. To mitigate this risk, game developers implement alternative security sensors. The alternative sensors themselves become a liability due to their intrusive and taxing nature. Online multiplayer games with real-time gameplay are known to be difficult to secure due to the cascading exponential nature of many-many relationships among the components involved. Behavior-based security sensor schemes, or referees (a trusted third party), could be a potential solution but require frameworks to obtain the game state information they need. We describe our Trust-Verify Game Protocol (TVGP), which is a sensor protocol intended for low-trust environments and designed to provide game state information to help support behavior-based cheat-sensing detection schemes. We argue TVGP is an effective solution for applying an independent trusted referee capability to trust-lacking subdomains and demands high-performance requirements. Our experimental results validate high efficiency and performance standards for TVGP. We identify and discuss the operational domain assumptions of the TVGP validation testing presented here.