Secure and scalable group communication environments are essential for many IoT applications as they are the cornerstone for different IoT devices to work together securely to realize smart applications such as smart cities or smart health. Such applications are often implemented in Wireless Sensor Networks, posing additional challenges. Sensors usually have low capacity and limited network connectivity bandwidth. Over time, a variety of Secure Group Communication (SGC) schemes have emerged, all with their advantages and disadvantages. This variety makes it difficult for users to determine the best protocol for their specific application purpose. When selecting a Secure Group Communication scheme, it is crucial to know the model’s performance under varying network conditions. Research focused so far only on performance in terms of server and client runtimes. To the best of our knowledge, we are the first to perform a network-based performance analysis of SGC schemes. Specifically, we analyze the network impact on the two centralized SGC schemes SKDC and LKH and one decentralized/contributory SGC scheme G-DH. To this end, we used the ComBench tool to simulate different network situations and then measured the times required for the following group operations: group creation, adding and removing members. The evaluation of our simulation results indicates that packet loss and delay influence the respective SGC schemes differently and that the execution time of the group operations depends more on the network situations than on the group sizes.
Read full abstract