ObjectivesNeuropathic pain (NP) is defined as constant disabling pain secondary to a lesion or disease of the somatosensory nervous system. This condition is particularly difficult to treat because it often remains resistant to most treatment strategies. Despite the recent diversification of neurostimulation methods, some patients still suffer from refractory pain syndromes. The central role of the posterior insular cortex (PI) in the modulation of pain signaling and perception has been repeatedly suggested. The objective of this study is to assess whether epidural insular stimulation (IS) could reverse NP behavior. Materials and MethodsA total of 53 adult Sprague-Dawley rats received left-sided spared nerve injury (SNI) or Sham-SNI to induce NP symptoms. Afterward, epidural electrodes were implanted over the right PI. After two weeks of postoperative recovery, three groups of SNI-operated rats each received a different stimulation modality: Sham-IS, low-frequency-IS (LF-IS), or high-frequency-IS (HF-IS). Behavioral and functional tests were conducted before and after IS. They comprised the acetone test, pinprick test, von Frey test, and sciatic functional index. An additional LF-IS group received a dose of opioid antagonist naloxone before IS. Intergroup means were compared through independent-samples t-tests, and pre- and post-IS means in the same group were compared through paired t-tests. ResultsWe found a significant reduction of cold allodynia (p = 0.019), mechanical hyperalgesia (p = 0.040), and functional disability (p = 0.005) after LF-IS but not HF-IS. Mechanical allodynia only showed a tendency to decrease after LF-IS. The observed analgesic effects were reversed by opioid antagonist administration. ConclusionThese results suggest a significant reversal of NP symptoms after LF-IS and offer additional evidence that IS might be beneficial in the treatment of resistant NP syndromes through endogenous opioid secretion. Relying on our novel epidural IS model, further fine tuning of stimulation parameters might be necessary to achieve optimal therapeutic effects.
Read full abstract