Quantum key distribution (QKD) is a secure communication method that utilizes the principles of quantum mechanics to establish secret keys. The central task in the study of QKD is to prove security in the presence of an eavesdropper with unlimited computational power. In this work, we successfully solve a long-standing open question of the security analysis for the three-state QKD protocol with realistic devices, i.e., the weak coherent-state source. We prove the existence of the squashing model for the measurement settings in the three-state protocol. This enables the reduction of measurement dimensionality, allowing for key rate computations using the numerical approach. We conduct numerical simulations to evaluate the key rate performance. The simulation results show that we achieve a communication distance of up to 200 km.