The microstructure of (doped) tungsten sheets is crucial for their mechanical behavior. Within this study, a new method, based on laser reflection, is proposed to in-situ determine the process of (secondary) recrystallization and the resulting grain size of (doped) tungsten sheets under ultra high vacuum conditions. The system introduced here allows to position the reflection setup at a reasonable distance from the sample to further observe the sample temperature via a pyrometer. The main signals of interest are the reflection intensity, the resulting distribution, and changes thereof. Furthermore, the proposed method can be carried out on polished and as rolled surfaces likewise. This novel method makes it possible to determine the secondary recrystallization temperature (TRx) in rolled (K-)doped tungsten sheets within a single non-isothermal annealing procedure. The average surface grain size during isothermal annealing procedures can be evaluated as well. Even though the observations are generally restricted to the surface, in the case of tungsten sheets a sufficient determination of bulk recrystallization kinetics is possible as well. Furthermore, the obtained results show, that the recrystallization temperature can serve as a sufficient measure to describe the recrystallized microstructure. Even for different sample strains, TRx correctly predicts the average grain size resulting for various temperature increase rates. The proposed method provides a simple, coherent, and robust method to evaluate the recrystallization properties of (doped) tungsten sheets within a single measurement.
Read full abstract