Styphnolobium japonicum (L.) Schott is a variant of Robinia pseudoacacia and is a popular Asian tree widely used in traditional medicine. From March 2019 to 2021, a disease was found on the campus of Nanjing Forestry University and several landscape sites of Xuanwuhu Park, causing dieback. Most of the trees (approximately 40%) have rotted branches. On average, 60% of the branches per individual tree were affected by this disease. The initial round lesions were grayish brown. In the later stage, the whole branch becomes black and produces spherical fruiting bodies . Twenty diseased branches were picked from three random trees. Small tissues (3-4mm²) were surface-sterilized in 75% ethanol for 30 s followed by 1% NaClO for 90 s and placed on potato dextrose agar (PDA), and incubated in the dark at 25°C for three days. Hyphae were visibly emerged from 70% of the samples. Three representative isolates (Lth-soj1, Lth-soj2, and Lth-soj3) were obtained and deposited in China’s Forestry Culture Collection Center (Lth-soj1: cfcc55896, Lth-soj2: cfcc55897, Lth-soj3: cfcc55898). The colonies of three isolates on PDA were fast growing and white, which turned grey to dark grey after 3 days of incubation in the dark at 28°C . Two-weeks old colonies were black and fluffy on PDA, with abundant aerial mycelium, and the reverse side too was black in color. The fungus usually grew well on PDA and produced pycnidia and conidia within 3–4 weeks. Conidia were initially hyaline and aseptate, ellipsoid to ovoid, with granular content, apex broadly rounded, remaining hyaline and later becoming dark brown, one septate, thick walled, base truncate or round and longitudinally striate. The conidia (n=30) of a representative isolate(Lth-soj1), measured 24.3 ± 0.3 μm in length and 13.3 ± 0.5 μm in width . The morphological characters of the three isolates matched those of Lasiodiplodia parva(Alves et al. 2008). For accurate identification, the DNA of the three isolates was extracted. The internal transcribed spacer region (ITS), translation elongation factor (EF1-α), and β-tubulin 2 (TUB2) genes were amplified using the primer pairs ITS1/ITS4 , EF1-728F/EF1-986R, and Bt2a/Bt2b , respectively. The sequences were deposited in GenBank under accession numbers MZ613154, MZ643245 and MZ643242 for Lth-soj1, MZ613155, MZ643246 and MZ643244 for Lth-soj2, and MZ613157, MZ643247 and MZ643243 for Lth-soj3. The ITS, EF1-α, and TUB2 sequences of isolate Lth-soj1 (GenBank Acc. No. MZ613154, MZ643245, MZ643242) were 100% (519/519 nt), 99.34% (299/301 nt), and 99.77% (436/437 nt) identical to those of MZ182360, EF622063, and MK294119, respectively. Interspecific differences were observed in a maximum-likelihood tree of Lasiodiplodia species using the concatenated dataset. Based on the morphological and molecular evidence, the isolates were identified as L. parva. The pathogenicity of three isolates were tested on potted three-year-old seedlings (100-cm tall) of S. japonicum maintained in a greenhouse. Healthy stems were wounded with a sterile needle then inoculated with 10 µL of conidial suspension. Control plants were treated with ddH2O. In total, 12 seedlings were inoculated including three controls. Three seedlings per isolate and 10 stems per seedling were used for each treatment. The plants were kept inside sealed polythene bags for the first 24 h and sterilized H2O was sprayed into the bags twice a day to maintain humidity and kept in a greenhouse at the day/night temperatures at 25/16°C. Within seven days, all the inoculated points showed lesions similar to those observed in field and the conidiomatas growing on the surface of the branches, whereas controls were asymptomatic . The infection rate of each of the three isolates was 100%. The strain was re-isolated from the lesions and sequenced as L.parva, whereas not from control stems. This is the first report of L. parva causing rotten branches of S. japonicum in China and the worldwide. These data will help to develop effective strategies for managing this newly emerging disease.
Read full abstract