The uncertainty regarding the correlation between sea spray aerosol (SSA) formation and sea surface temperature (SST) hinders the accurate estimation of SSA’s impact on global climate. Here, we developed a temperature-controlled plunging SSA simulation tank to investigate the impact of SST on SSA formation from two perspectives: SSA particle size distribution and organic enrichment. Our findings show that SSA particle size decreases with decreasing SST, as exhibited by an increase in SSA within Aitken mode and a decrease in SSA within accumulation and coarse modes. SST can significantly enhance organic enrichment in SSA particles, while the multiplicative increases vary from 2 to 10 times depending on the organic matter species and the SSA particle size. Based on our experimental results, it is predicted that SST reduction may lead to a significantly higher contribution of Aitken modal SSA-derived CCN in cold waters (0 °C) than in warm waters (30 °C). Additionally, we incorporate SST for the first time in estimating the global flux of dissolved organic carbon (DOC) emitted via SSA, yielding a value ranging from 23.45 to 55.78 Tg C yr−1. Compared to previous works, our study reveals the crucial role of SST in influencing both cloud formation and the atmospheric organic burden of SSA.
Read full abstract