Soil salinization limits rice growth and is an important restriction on grain yield. Jacalin-related lectins are involved in multiple stress responses, but their role in salt stress responses and use as molecular markers for salt tolerance remain poorly understood. Salt stress treatments and RT-qPCR analyses of Sea Rice 86 (SR86), 9311, and Nipponbare (Nip) showed that OsJRL45 and OsJRL40 enhanced tolerance of salt stress in SR86. Molecular markers based on sequence differences in SR86 and the salt-sensitive variety, 9311, in the intergenic region between OsJRL45 and OsJRL40 were validated in recombinant inbred lines derived from SR86 and 9311, hybrid populations, and common rice varieties. Yeast two-hybrid and bimolecular fluorescence complementation demonstrated that OsJRL45 and OsJRL40 interacted. Co-transformation of Nip with OsJRL45 and OsJRL40 derived from SR86 had no effect on the mature phenotype in T2 plants; however, salt stress at the three-leaf stage led to significant increases in CAT, POD, SOD, and Pro contents, but reduced MDA content in transgenic plants. Transcriptomic analysis identified 834 differentially expressed genes in transgenic plants under salt stress. GO and KEGG enrichment analyses indicated that metabolic pathways related to antioxidant responses and osmotic balance were crucial for salt-stress tolerance. Thus, molecular markers based on nucleotide differences in OsJRL45 and OsJRL40 provide a novel method for identifying salt-tolerant rice varieties.
Read full abstract