Over the past 2 decades, wide-field photometric surveys in optical and infrared domains reached a nearly all-sky coverage thanks to numerous observational facilities operating in both hemispheres. However, subtle differences among exact realizations of Johnson and SDSS photometric systems require one to convert photometric measurements into the same system prior to analysis of composite data sets originating from multiple surveys. It turns out that the published photometric transformations lead to substantial biases when applied to integrated photometry of galaxies from the corresponding catalogs. Here we present photometric transformations based on piece-wise linear approximations of integrated photometry of galaxies in the optical surveys SDSS, DECaLS, BASS, MzLS, DES, DELVE, KiDS, VST ATLAS, and the near-infrared surveys UKIDSS, UHS, VHS, and VIKING. We validate our transformations by constructing k-corrected color–magnitude diagrams of non-active galaxies and measuring the position and tightness of the “red sequence.” We also provide transformations for aperture magnitudes and show how they are affected by the image quality difference among the surveys. We present the implementation of the derived transformations in python and idl and also a web-based color transformation calculator for galaxies. By comparing DECaLS and DES, we identified systematic issues in DECaLS photometry for extended galaxies, which we attribute to the photometric software package used by DECaLS. As an application of our method, we compiled two multi-wavelength photometric catalogs for over 200,000 low- and intermediate-redshift galaxies originating from CfA FAST and Hectospec spectral archives.