Weight loss often results from various experimental conditions including scurvy in guinea pigs, where we showed that decreased collagen synthesis was directly related to weight loss, rather than to defective proline hydroxylation (Chojkier, M., Spanheimer, R., and Peterkofsky, B. (1983) J. Clin. Invest. 72, 826-835). In the study described here, this effect was reproduced by acutely fasting normal guinea pigs receiving vitamin C, as determined by measuring collagen and non-collagen protein production after labeling tissues in vitro with [3H]proline. Collagen production (dpm/microgram of DNA) decreased soon after initiating fasting and by 96 h it had reached levels 8-12% of control values. Effects on non-collagen protein were much less severe, so that the percentage of collagen synthesis relative to total protein synthesis was 20-25% of control values after a 96-h fast. These effects were not due to changes in the specific radioactivity of free proline. Refeeding reversed the effects on non-collagen protein production within 24 h, but collagen production did not return to normal until 96 h. The effect of fasting on collagen production was independent of age, sex, ascorbate status, species of animal, and type of connective tissue and also was seen with in vivo labeling. Pulse-chase experiments and analysis of labeled and pre-existing proteins by gel electrophoresis showed no evidence of increased collagen degradation as a result of fasting. Procollagen mRNA was decreased in tissues of fasted animals as determined by cell-free translation and dot-blot hybridization with cDNA probes. In contrast, there was no decrease in translatable mRNAs for non-collagen proteins. These results suggest that loss of nutritional factors other than vitamin C lead to a rapid, specific decrease in collagen synthesis mainly through modulation of mRNA levels.
Read full abstract