Widespread use of spray-type consumer products can raise significant concerns regarding their effects on indoor air quality and human health. In this study, we conducted non-target screening using gas chromatography-mass spectrometry (GC-MS) to analyze VOCs in 48 different spray-type consumer products. Using this approach, we tentatively identified a total of 254 VOCs from the spray-type products. Notably, more VOCs were detected in propellant-type products which are mostly solvent-based than in trigger-type ones which are mostly water-based. The VOCs identified encompass various chemical classes including alkanes, cycloalkanes, monoterpenoids, carboxylic acid derivatives, and carbonyl compounds, some of which arouse concerns due to their potential health effects. Alkanes and cycloalkanes are frequently detected in propellant-type products, whereas perfumed monoterpenoids are ubiquitous across all product categories. Among the identified VOCs, 12 compounds were classified into high-risk groups according to detection frequency and signal-to-noise (S/N) ratio, and their concentrations were confirmed using reference standards. Among the identified VOCs, D-limonene was the most frequently detected compound (freq. 21/48), with the highest concentration of 1.80 mg/g. The risk assessment was performed to evaluate the potential health risks associated with exposure to these VOCs. The non-carcinogenic and carcinogenic risks associated with the assessed VOC compounds were relatively low. However, it is important not to overlook the risk faced by occupational exposure to these VOCs, and the risk from simultaneous exposure to various VOCs contained in the products. This study serves as a valuable resource for the identification of unknown compounds in the consumer products, facilitating the evaluation of potential health risks to consumers.
Read full abstract