Systemic sclerosis-associated interstitial lung disease (SSc-ILD) is the leading cause of death in patients with SSc with unclear pathogenesis and limited treatment options. Evidence strongly supports an important role for profibrotic secreted phosphoprotein 1 (SPP1)-expressing macrophages in SSc-ILD. This study was undertaken to define the transcriptome and chromatin structural changes of SPP1 SSc-ILD macrophages in order to better understand their role in promoting fibrosis and to identify transcription factors associated with open chromatin driving their altered phenotype. We performed single-cell RNA sequencing (scRNA-Seq) on 11 explanted SSc-ILD and healthy control lung samples, as well as single-cell assay for transposase-accessible chromatin sequencing on 5 lung samples to define altered chromatin accessibility of SPP1 macrophages. We predicted transcription factors regulating SPP1 macrophages using single-cell regulatory network inference and clustering (SCENIC) and determined transcription factor binding sites associated with global alterations in SPP1 chromatin accessibility using Signac/Seurat. We identified distinct macrophage subpopulations using scRNA-Seq analysis in healthy and SSc-ILD lungs and assessed gene expression changes during the change of healthy control macrophages into SPP1 macrophages. Analysis of open chromatin validated SCENIC predictions, indicating that microphthalmia-associated transcription factor, transcription factor EB, activating transcription factor 6, sterol regulatory element binding transcription factor 1, basic helix-loop-helix family member E40, Kruppel-like factor 6, ETS variant transcription factor 5, and/or members of the activator protein 1 family of transcription factors regulate SPP1 macrophage differentiation. Our findings shed light on the underlying changes in chromatin structure and transcription factor regulation of profibrotic SPP1 macrophages in SSc-ILD. Similar alterations in SPP1 macrophages may underpin fibrosis in other organs involved in SSc and point to novel targets for the treatment of SSc-ILD, specifically targeting profibrotic macrophages.