The dipping tube hydropneumatic tank is one of the most efficient equipments to prevent water hammer in water distribution and long distance transmission pipe systems. Due to its low costs and easy to maintain features, dipping tube hydropneumatic tank has many irreplaceable advantages, however it is difficult to determine the correct size and gas volume for real world engineering applications. This paper presents a robust method to solve the problems from theory and application. Based on the Method of Characteristics (MOC) equations, this paper derives the equations for modeling dipping tube hydropneumatic tanks in water distribution systems to prevent water hammer. The equations include MOC, differential orifice head loss equation, gas law, air mass, air velocity and etc. The IBMs scientific subroutine package (SSP) is applied to solve the equations by deriving to the form of X=f (X). The method has been integrated into HAMMER. This paper also presents an example to illustrate the methods of determining the tank size, and the comparison results with sealed hydropneumatic tank and surge tank equipment.
Read full abstract