Two-sided assembly lines are typically employed in the production of medium and large-sized products with the aim of reducing the length of the assembly line, enhancing assembly efficiency and consequently reducing the time required for product assembly. However, traditional Two-sided assembly lines lack effective resource scheduling management methods in production scheduling, which results in low productivity and high resource costs. In order to address this issue, we propose a new two-sided resource-constrained assembly line balancing problem (TRCLBP) model. The model takes the minimum number of workstations and the minimum assembly cost as its objective function and proposes an improved genetic algorithm (I-GA) to solve it. A three-layer chromosome initialization method is proposed for the assembly tasks and resource decisions, which effectively improves the diversity and quality of the initial population. Furthermore, the algorithm employs strategies such as matching crossover and redistributing variants to ensure rapid convergence of the populations and to prevent them from falling into local optimums. Finally, the efficacy of the model and algorithm proposed in this paper is validated through a comprehensive analysis of arithmetic case studies and enterprise engineering examples. This analysis reveals a reduction of approximately 18 % in the total cost of assembly. Furthermore, the model enables enterprises to make informed decisions regarding the optimal allocation of resources, thereby reducing production costs and improving the efficiency of assembly operations during periods of expansion.