Change detection based on optical image processing plays a crucial role in the field of damage assessment. Although existing damage scene change detection methods have achieved some good results, they are faced with challenges, such as low accuracy and slow speed in optical image change detection. To solve these problems, an image change detection approach that combines infrared polarization imaging with a fast principal component analysis network (Fast-PCANet) is proposed. Firstly, the acquired infrared polarization images are analyzed, and pixel image blocks are extracted and filtered to obtain the candidate change points. Then, the Fast-PCANet network framework is established, and the candidate pixel image blocks are sent to the network to detect the change pixel points. Finally, the false-detection points predicted by the Fast-PCANet are further corrected by region filling and filtering to obtain the final binary change map of the damage scene. Comparisons with typical PCANet-based change detection algorithms are made on a dataset of infrared-polarized images. The experimental results show that the proposed Fast-PCANet method improves the PCC and the Kappa coefficient of infrared polarization images over infrared intensity images by 6.77% and 13.67%, respectively. Meanwhile, the inference speed can be more than seven times faster. The results verify that the proposed approach is effective and efficient for the change detection task with infrared polarization imaging. The study can be applied to the damage assessment field and has great potential for object recognition, material classification, and polarization remote sensing.
Read full abstract