This study addresses the limitations of traditional sports rehabilitation, emphasizing the need for improved accuracy and response speed in real-time action detection and recognition in complex rehabilitation scenarios. We propose the STA-C3DL model, a deep learning framework that integrates 3D Convolutional Neural Networks (C3D), Long Short-Term Memory (LSTM) networks, and spatiotemporal attention mechanisms to capture nuanced action dynamics more precisely. Experimental results on multiple datasets, including NTU RGB + D, Smarthome Rehabilitation, UCF101, and HMDB51, show that the STA-C3DL model significantly outperforms existing methods, achieving up to 96.42% accuracy and an F1 score of 95.83% on UCF101, with robust performance across other datasets. The model demonstrates particular strength in handling real-time feedback requirements, highlighting its practical application in enhancing rehabilitation processes. This work provides a powerful, accurate tool for action recognition, advancing the application of deep learning in rehabilitation therapy and offering valuable support to therapists and researchers. Future research will focus on expanding the model's adaptability to unconventional and extreme actions, as well as its integration into a wider range of rehabilitation settings to further support individualized patient recovery.
Read full abstract