AbstractIn this paper, we aim to reconstruct meteoroid trajectories using a forward scatter radio system transmitting a continuous wave (CW) with no modulation. To do so, we use the meteor echoes recorded at the receivers of the BRAMS (Belgian RAdio Meteor Stations) network. This system consists, at the time of writing, of a dedicated transmitter and 44 receiving stations located in and nearby Belgium, all synchronized using GPS clocks. Our approach processes the meteor echoes at the BRAMS receivers and uses the time delays as inputs to a nonlinear optimization solver. We compare the quality of our reconstructions with and without interferometric data to the trajectories given by the optical CAMS (Cameras for Allsky Meteor Surveillance) network in Benelux. We show that the general CW forward scatter trajectory reconstruction problem can be solved, but we highlight its strong ill‐conditioning. With interferometry, this high sensitivity to the inputs is alleviated and the reconstructed trajectories are in good agreement with optical ones, displaying an uncertainty smaller than 10% on the velocity and 2° on the inclination for most cases. To increase accuracy, the trajectory reconstruction with time delays only should be complemented by information about the signal phase. The use of at least one interferometer makes the problem much easier to solve and greatly improves the accuracy of the retrieved velocities and inclinations. Increasing the number of receiving stations also enhances the quality of the reconstructions.
Read full abstract