In this paper, we show a new regularity theorem for quasi-minima of scalar integral functionals of the calculus of variations with general growths. Let us consider functionals as the following one $$\begin{aligned} \ J\left[ u,\Omega \right] =\int \limits _{\Omega }f\left( x,u\left( x\right) , \nabla u\left( x\right) \right) \,\mathrm{d}x \end{aligned}$$ where $$f:\Omega \times {\mathbb {R}}\times {\mathbb {R}}^{N}\rightarrow {\mathbb {R}} $$ is a Caratheodory function that verifies the following hypothesis of growth $$\begin{aligned} c_{1}\Phi \left( \left| z\right| \right) -b\left( x\right) \left( \Phi \left( \left| s\right| \right) \right) ^{\gamma }-a\left( x\right) \le f\left( x,s,z\right) \le c_{2}\Phi \left( \left| z\right| \right) +b\left( x\right) \left( \Phi \left( \left| s\right| \right) \right) ^{\gamma }+a\left( x\right) \end{aligned}$$ for each $$z\in {\mathbb {R}}^{N}$$ , $$s\in {\mathbb {R}} $$ and for $${\mathcal {L}}^{N}$$ -a. e. $$x\in \Omega $$ . Moreover, $$\Phi $$ is a N-function, $$c_{1}$$ and $$c_{2}$$ are two positive real constants, with $$ c_{1}<c_{2}$$ , $$\Omega \subset {\mathbb {R}}^{N}$$ is an open subset, $$N\ge 2$$ , $$\ b\left( x\right) \in L_{\mathrm{loc}}^{r}\left( \Omega \right) $$ , $$a\left( x\right) \in L_{\mathrm{loc}}^{t}\left( \Omega \right) $$ with $$t=\frac{N}{1-N\epsilon }$$ , $$r=\frac{N}{N-\gamma \left( N-1\right) -N\epsilon }$$ , $$1<\gamma <\frac{N}{N-1}$$ , $$0<\epsilon <\frac{1}{N}$$ and $$ b\left( x\right) ,a\left( x\right) \ge 0$$ on $$\Omega $$ . The functional $$\ J \left[ u,\Omega \right] $$ is defined on the Orlicz–Sobolev space $$ W_{0}^{1}L^{\Phi }\left( \Omega \right) +g$$ where $$g\in W^{1}L^{\Phi }\left( \Omega \right) $$ , $$\Phi $$ is a N-function. Moreover, we suppose that $$\Phi \in \triangle _{2}$$ and we will give some further hypotheses on the N-function $$\Phi $$ .