We study the compactness property of operator solutions to certain operator inequalities arising from the frequency theorem of Likhtarnikov — Yakubovich for C0-semigroups. We show that the operator solution can be described through solutions of an adjoint problem as it was previously known under some regularity condition. Thus we connect some regularity properties of the semigroup with the compactness of the operator in the general case. We also prove several results useful for checking the non-compactness of operator solutions to Lyapunov inequalities and equations, into which the operator Riccati equation degenerates in certain cases arising in applications. As an example, we apply these theorems for a scalar delay equation posed in a proper Hilbert space and show that the operator solution cannot be compact. This results are related to the author recent work on a non-local reduction principle of cocycles (non-autonomous dynamical systems) in Hilbert spaces.