Performance enhancement and system scalability are two of the most important issues in the design of multiprocessor systems. A scalable cluster-based multiprocessor architecture and its simulation environment called SEECMA are proposed. Several new issues in our architecture, including scalable cache coherence protocols, relaxed memory consistency models, memory optimization techniques and several types of processors are considered. It has been developed to meet current trends in clustering architecture design. Additionally, the SEECMA environment is presented as a helpful investigation tool for both education and research. In addition to many simulation options, it is provided with a user-friendly graphic interface. SEECMA can automatically collect data from several simulation runs and display the results for comparison. So far, we have evaluated several vital issues of cluster-based multiprocessors on SEECMA including effective prefetching and replacement policies, and optimization of migratory sharing using both hardware and software mechanisms. On average, these enhance system performance by up to 8%, 9% and 7%, respectively. Our cluster-based multiprocessor architecture also scales more readily than the current general, or cluster-based, multiprocessor environments.
Read full abstract