Snakebite is a life-threatening medical emergency, and globally responsible for millions of deaths. In snakebites accidents only deaths are not a concern, it leads to more morbidities. Due to scanty healthcare facilities in rural areas of India, many people seek alternative treatment available in ethnic practices. Tamarindus Indica (TI) plant is rich in medicinal value and used to treat many diseases including snakebite treatment traditionally. In view of this TI seed coat extract (TISCE) was evaluated for antivenom activity. The phytochemical screening of TISCE was performed to understand its chemical composition. TISCE was evaluated for antivenom activity against Indian cobra venom (ICV), common krait venom (CKV), Russells viper venom (RVV), and saw-scaled viper venom (SCV) for phospholipase A2 (PLA-2), haemorrhagic in vitro and in vivo, procoagulant, proteolytic activity, and lethality studies. TISCE majorly contains saponins, glycosides, alkaloids, and phenolic compounds. Minimum indirect haemorrhagic dose (MIHD) observed for ICV (12.5 µg), CKV (5.0 µg),RVV (10.0 µg), and SVV (12.5 µg). TISCE inhibits the procoagulant activity of all venoms at a concentration of 18.0 µg. It also shows the neutralization of proteolytic enzymes of venom in a dose-dependent manner. A pre-incubated mixture containing five lethal dose 50 (LD50) of venom and TISCE was injected intravenously, all mice survived as venom neutralized by TISCE. The present study demonstrates the ability of TISCE to neutralize snake venom using suitable in vivo and in vitro methods. Further studies required to unravelling the speciï¬c active chemical constituent of TISCE that may used as novel alternative snakebite treatment. TISCE was able to prolong the deaths during the simulation study and may be used in the topical pharmaceutical formulation that will reduce local venom reactions causing much morbidity, which will collectively with Anti-snake venom (ASV), used to treat envenomed patients more effectively.
Read full abstract