The effect of high altitude (HA, altitude >2500 m) can trigger a maladaptive response in unacclimatized individuals, leading to various HA illnesses such as high altitude pulmonary edema (HAPE). The present study investigates circulating cell free (cf) DNA, a minimally invasive biomarker that can elicit a pro-inflammatory response. Our earlier study observed altered cfDNA fragment patterns in HAPE patients and the significant correlation of these patterns with peripheral oxygen saturation levels. However, the unclear release mechanisms of cfDNA in circulation limit its characterization and clinical utility. The present study not only observed a significant increase in cfDNA levels in HAPE patients (27.03 ± 1.37 ng/ml; n = 145) compared to healthy HA sojourners (controls, 14.57 ± 0.74 ng/ml; n = 65) and highlanders (HLs, 15.50 ± 0.8 ng/ml; n = 34) but also assayed the known cell death markers involved in cfDNA release at HA. The study found significantly elevated levels of the apoptotic marker, annexin A5, and secondary necrosis or late apoptotic marker, High mobility group box 1, in HAPE patients. In addition, we observed ahigher oxidative DNA damage marker, 8-hydroxy-2'-deoxyguanosine, in HAPE compared to controls, suggestive of the role of oxidative DNA status in promoting the inflammatory potential of cfDNA fragments and their plausible role in manifesting HAPE pathophysiology. Extensive in vitro future assays can confirm theimmunogenic role of cfDNA fragments that may act as a danger-associated molecular pattern and associate with markers of cellular stresses in HAPE.
Read full abstract