Transition metal ditellurides (TMDTs) have numerous attractive properties, making them suitable for a wide range of applications. In this study, cobalt ditelluride (CoTe2) nanosheets, a promising TMDT for photonic applications, were prepared using an ultrasound-enhanced liquid phase exfoliation (LPE) method. A novel saturable absorber (SA) employing CoTe2 nanosheets was then fabricated by optically depositing them on microfiber. The nonlinear optical modulation properties of the CoTe2 SA were investigated. A high-performance 1 μm ultrafast fiber laser was demonstrated by incorporating newly developed CoTe2 nanosheets-based SA in a ring cavity ytterbium-doped fiber laser (YDFL). The dynamical behaviour of the proposed passively mode-locked YDFL in response to variations in pump optical power was investigated. The findings reveal that the device achieved a modulation depth of 2.5 %, and saturation light intensity of 30.6 MW/cm2. Moreover, a stable and robust mode-locked soliton optical pulse sequence with a fundamental repetition frequency of 3.089 MHz, and a pulse duration of 224 fs was generated at 1032 nm. The proposed YDFL, being all-fiber, compact, and cost-effective, is set to find extensive applications in various domains, including optical fiber communication, sensing, and biomedical imaging.
Read full abstract