Sea ice is a crucial component of the global climate system. The China–French Ocean Satellite Scatterometer (CFOSAT/SCAT, CSCAT) employs an innovative rotating fan beam system. This study applied principal component analysis (PCA) to extract classification features and developed an ensemble machine learning approach for sea ice detection. PCA identified key features from CSCAT’s backscatter information, representing outer and sweet swath observations. The ensemble model’s performances (OA and Kappa) for the Northern and Southern Hemispheres were 0.930, 0.899, and 0.844, 0.747, respectively. CSCAT achieved an accuracy of over 0.9 for close ice and open water but less than 0.3 for open ice, with misclassification of open ice as closed ice. The sea ice extent discrepancy between CSCAT and the National Snow and Ice Data Center (NSIDC) was −0.06 ± 0.36 million km2 in the Northern Hemisphere and −0.03 ± 0.48 million km2 in the Southern Hemisphere. CSCAT’s sea ice closely matched synthetic aperture radar (SAR) imagery, indicating effective sea ice and open water differentiation. CSCAT accurately distinguished sea ice from open water but struggled with open ice classification, with misclassifications in the Arctic’s Greenland Sea and Hudson Bay, and the Antarctic’s sea ice–water boundary.
Read full abstract