Subcrustal stress induced by mantle convection can be determined by the Earth’s gravitational potential. In this study, the spherical harmonic expansion of the simplified Navier–Stokes equation is developed further so satellite gradiometry data (SGD) can be used to determine the subcrustal stress. To do so, we present two methods for producing the stress components or an equivalent function thereof, the so-called S function, from which the stress components can be computed numerically. First, some integral estimators are presented to integrate the SGD and deliver the stress components and/or the S function. Second, integral equations are constructed for inversion of the SGD to the aforementioned quantities. The kernel functions of the integrals of both approaches are plotted and interpreted. The behaviour of the integral kernels is dependent on the signal and noise spectra in the first approach whilst it does not depend on extra information in the second method. It is shown that recovering the stress from the vertical–vertical gradients, using the integral estimators presented, is suitable, but when using the integral equations the vertical–vertical gradients are recommended for recovering the S function and the vertical–horizontal gradients for the stress components. This study is theoretical and numerical results using synthetic or real data are not given.