Antimicrobial peptides (AMPs) are important players of the innate immune system with a major role in the defense against invading pathogens. AMPs belonging to the family of saposin-like proteins (SAPLIPs) include the porcine NK-lysin and the human granulysin. In the zebrafish Danio rerio, transcript analyses of NK-lysin encoding genes have been reported, but biochemical characterizations at the protein level are missing so far. Here, we present the recombinant expression, purification, and characterization of one of these homologs, namely of NK-lysin A (DaNKlA). To remove the affinity tag from DaNKlA, we made use of a self-splicing intein. Recombinant DaNKlA depolarized liposomes over a broad pH range and showed a preference for negatively charged lipids. DaNKlA inhibited the growth of and killed different Gram-positive and Gram-negative bacteria, including the fish pathogenic bacterium Vibrio anguillarum, by membrane permeabilization but displayed substantially lower activity against yeast cells. Structural modelling and bioinformatic comparison of DaNKlA with characterized SAPLIPs suggest membrane destabilization accompanied by strong electrostatic interactions as the mode of action.
Read full abstract