Miniaturized silicon thermal probes for plant’s sap flow measurement, or micro sap flow sensors, have advantages in minimum invasiveness, low power consumption, and fast responses. Practical applications in sap flow measurement has been demonstrated with the single-probe silicon micro sensors. However, the sensors could not detect flow directions and require estimating zero sap flow output that leads to significant source of uncertainty. Furthermore, silicon-needles would break easily during the insertion into plants. We present the first three-element micro thermal sap flow sensor packaged on a durable printed circuit board needle that can measure bidirectional flows with improved dynamics and precision. The performance of the newly designed calorimetric flow sensor was confirmed through precision calibration and field test on tomato stems. A calibration curve for a tomato stem was obtained with a sensitivity of 0.299 K/(µL mm−2 s−1) under the maximum temperature increase of 4.61 K. Results from the field test for one month revealed a correlation between the measured sap flux density and related conditions such as solar radiation, vapor pressure deficit, sunshade and irrigation. The developed sensor will contribute to practical long-term sap flow monitoring for small and delicate plants with minimal physical invasion.
Read full abstract