The accuracy of compound-specific isotope analysis (CSIA) of trace-level pollutants in complex environmental samples has always been limited by two main challenges: poor chromatographic separation and insufficient amounts of analytes. In this study, a two-dimensional gas chromatography-isotope ratio mass spectrometry (2DGC-IRMS) system was constructed for compound-specific δ13C analysis of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in estuarine/marine sediments. This construction occurred through hyphenating an extra gas chromatography system (GC) to a conventional GC-IRMS using a commercially available multi-column switching-cryogenic trapping system (MCS-CTS). Compared with the previous 2DGC-IRMS strategy, which utilizes a Deans Switch device, the newly implemented 2DGC-IRMS scheme resulted in online purification of target analytes as well as enriched them online via duplicate injection and cryogenic trapping in CTS; this resultingly lowered the limits of detection (LOD) of CSIA. To improve the sample transfer efficiency to the IRMS, a broader-bore and longer fused-silica capillary was utilized to replace the original sample capillary running from the sample open split to the IRMS. A ẟ13C analysis of PAH standards showed accurate ẟ13C values, and high precisions (standard deviations 0.13–0.37%) were achieved, with the LOD of HMW-PAHs reduced to at least 1.0 mg/L (i.e., 0.07 to 0.09 nmol carbon per compound on-column). The successful application of this newly developed 2DGC-IRMS scheme provides a practical solution for the reliable CSIA of trace-level pollutants in complex environmental samples that cannot be measured using the conventional GC-IRMS system.
Read full abstract