ABSTRACT Inventorying forest ecosystems is an essential part of forest management planning. However, it is quite costly and time-consuming, particularly for larger areas. Recently, significant developments have been made in unmanned aerial vehicle (UAV) technology to improve the cost and time efficiency in forest inventory. Therefore, UAV images have become one of the inventory tools that produces data with high spatial resolution in determining forest resources. This study aims to investigate the contribution of UAV data to forest inventory in a case study area with a total of 30 sample plots located in pure and natural Crimean pine (Pinus nigra J.F. Arnold ssp. pallasiana (Lamb.) Holmboe) stands in the Black Sea backward region of Türkiye. Total tree height (h) and stem volume (v) were recorded at individual tree level (n = 367), and the number of trees (N), mean height (hmean), top height (htop), stand basal area (BA) and stand volume (V) were calculated at sample plot level (n = 30) from both the field and UAV-based data. Pearson’s correlation coefficients (r) for h and v were 0.96 and 0.72, respectively, the highest correlation at the sample plot level was observed for the hmean - htop (r = 0.96), while the lowest correlation was found for BA (r = 0.54). The suitability of the observation and prediction values was assessed using a t-test at both individual tree and sample plot levels. According to the t-test results, the observation and prediction values for h, v, hmean, htop, BA and V metrics were found to be compatible (p > 0.05), but not for N (p < 0.05). Overall results indicated that UAV technology has a potential to be used in forest inventory and can contribute to the determination of individual tree and stand metrics. Thereby, it saves cost and time in forest inventory studies and helps monitoring the dynamic structure of the forest ecosystem with an effective approach in forest inventory.
Read full abstract