We present results from explicit-solvent coarse-grained molecular dynamics (MD) simulations of fully charged, salt-free, and unentangled polyelectrolytes in semidilute solutions. The inclusion of a polar solvent in the model allows for a more physical representation of these solutions at concentrations, where the assumptions of a continuum dielectric medium and screened hydrodynamics break down. The collective dynamic structure factor of polyelectrolytes, S(q,t), showed that at [Formula: see text], where [Formula: see text] is the polyelectrolyte peak in the structure factor S(q) and [Formula: see text] is the correlation length, the relaxation time obtained from fits to stretched exponential was [Formula: see text], which describes unscreened Zimm-like dynamics. This is in contrast to implicit-solvent simulations using a Langevin thermostat where [Formula: see text]. At [Formula: see text], a crossover region was observed that eventually transitions to another inflection point [Formula: see text] at length scales larger than [Formula: see text] for both implicit- and explicit-solvent simulations. The simulation results were also compared to scaling predictions for correlation length, [Formula: see text], specific viscosity, [Formula: see text], and diffusion coefficient, [Formula: see text], where [Formula: see text] is the polyelectrolyte concentration. The scaling prediction for [Formula: see text] holds; however, deviations from the predictions for [Formula: see text] and D were observed for systems at higher [Formula: see text], which are in qualitative agreements with recent experimental results. This study highlights the importance of explicit-solvent effects in molecular dynamics simulations, particularly in semidilute solutions, for a better understanding of polyelectrolyte solution behavior.
Read full abstract