Sagittally focusing x-ray crystal spectrometers with elliptical profiles in the meridional (x-ray dispersion) plane are proposed for plasma diagnostics in experiments accompanied by high neutron yields. The spectrometers feature a variable sagittal radius of curvature to ensure the sagittal focusing of rays for each photon energy in a chosen detection plane. The detector is placed after the ray crossing point at the second ellipse focus, and the source-to-detector distance is maximized to reduce the neutron-induced background. The elliptical shape imposes a limitation on the spectrometer geometry such that the influence of the source size on the spectral resolution can be avoided only for a demagnifying spectrometer (the source-to-crystal distance is larger than that of crystal-to-detector). Hence, two designs are proposed. The first design, featuring high magnification and limited spectral resolution can be suitable for x-ray continuum spectroscopy. The second design of high demagnification is optimized for spectral resolution, and can be used for time-resolved spectroscopy of plasma's characteristic emission lines using streak cameras. The key performance characteristics of the two designs are verified using ray tracing.
Read full abstract