We have developed a quantitative safety prediction model for subchronic repeated doses of diverse organic chemicals on rats using the novel quantitative read-across structure-activity relationship (q-RASAR) approach, which uses similarity-based descriptors for predictive model generation. The experimental -Log (NOAEL) values have been used here as a potential indicator of oral subchronic safety on rats as it determines the maximum dose level for which no observed adverse effects of chemicals are found. A total of 186 data points of diverse organic chemicals have been used for the model generation using structural and physicochemical (0D–2D) descriptors. The read-across-derived similarity, error, and concordance measures (RASAR descriptors) have been extracted from the preliminary 0D–2D descriptors. Then, the combined pool of RASAR and the identified 0D–2D descriptors of the training set were employed to develop the final models by using the partial least squares (PLS) algorithm. The developed PLS model was rigorously validated by various internal and external validation metrics as suggested by the Organization for Economic Co-operation and Development (OECD). The final q-RASAR model is proven to be statistically sound, robust and externally predictive (R2 = 0.85, Q2LOO = 0.82 and Q2F1 = 0.94), superseding the internal as well as external predictivity of the corresponding quantitative structure-activity relationship (QSAR) model as well as previously reported subchronic repeated dose toxicity model found in the literature. In a nutshell, the q-RASAR is an effective approach that has the potential to be used as a good alternative way to improve external predictivity, interpretability, and transferability for subchronic oral safety prediction as well as ecotoxicity risk identification.