Wearable robots have promising characteristics for human augmentation; however, the the design and specification stage needs to consider biomechanical impact. In this work, musculoskeletal software is used to assess the biomechanical implications of having a two-degrees-of-freedom supernumerary robotic tail mounted posterior to the human trunk. Forward and backward tilting motions were assessed to determine the optimal design specification. Specifically; the key criteria utilised included the centre of pressure, the dynamic wrench exerted by the tail onto the human body and a global muscle activation index. Overall, it was found that use of a supernumerary tail reduced lower limb muscle activation in quiet stance. Furthermore, the optimal design specification required a trade-off between the geometric and inertial characteristics, and the amount of muscle assistance provided by the tail to facilitate safe physical Human-Robot interaction. 
.