Dimethyl sulfoxide (DMSO) is a solvent used to dissolve a variety of organic compounds. It is presumed to be non-toxic at concentrations below 10 % v/v, although several studies have demonstrated that low dose DMSO exposure can alter cellular biochemistry. This study evaluated the toxicity of DMSO at 0.0002 % v/v to the Sydney Rock oyster, Saccostrea glomerata, following 7d of exposure. Metabolites were chosen as the toxicity endpoints because they can be used as energy sources and counteract contaminant-induced stress. Relative to seawater controls, exposure to DMSO caused a 74 % significant change in metabolites in the female digestive gland, including decreases in most amino acids, carbohydrates, nicotinamides, and lipids. The female gonad showed a 43 % significant change in metabolites, with decreases in amino acids and carbohydrates, but increases in lipids. The male digestive gland showed a 29 % significant change in metabolites, with increases in lipids. The decline in metabolites in the female digestive glands but not in males may be due to their differential metabolic demands. Furthermore, pathway impact analysis revealed that DMSO exposure altered energy metabolism, disturbed osmotic balance, and induced oxidative stress in oysters. Because the effects of DMSO are not uniform across gender and tissue, use of DMSO as a solvent will confound metabolomic experimental results when comparisons among sexes and/or tissues are integral to the experimental design. There is a risk of incomplete dissolution of contaminants unless carrier solvents are used. Therefore, in practice, a water control along with a solvent control is recommended for any experimentation.
Read full abstract