Sablefish Anoplopoma fimbria is a groundfish of the North PacificOceantypically found in sea floor habitat at depths to 2700m. Prized as a food fish with exceptionally high market value, sablefish aquaculture has been sought to provide a sustainable source of this fish to meet market demands. While commercial culture has successfully produced market-sized fish in Pacific coastal environments, production has been hampered by disease and the overall lack of information on sablefish health and immunology. To begin to address these knowledge gaps, herein we describe the isolation and characterization of spontaneously immortalized sablefish larval cell lines (AFL). Six sublines were established from pools of early yolk-sac larvae, while attempts to develop tissue-specific-derived cell lines were unsuccessful. The six yolk-sac larval cell lines each display two morphologies in culture, an elongated fibroblast-like cell type, and a rounded squamous or epithelial-like cell type. Cytogenetic characterization suggests that both cell types are diploid (2n = 48) with 24 pairs of chromosomes, 23 pairs of autosomes, and 1 pair of sex chromosomes. A small proportion (11%) of AFL cells display tetraploidy. Incubation temperature and medium composition experiments revealed HEPES buffered L-15 media containing 10-20% FBS at temperatures between 15 and 18° C yielded optimal cell growth. These growth characteristics suggest that sablefish larval cells display a robustness for varying growth conditions. The establishment of AFL cell lines provides a foundational tool to study the physiology, health, immunology, and cell and molecular biology of sablefish.
Read full abstract