Gas turbines are used in the energy sectors as propulsion and power generation technologies. Despite technological advances in power generation and the emergence of numerous energy resources, gas turbine technology remains important due to its flexibility in load demand following, dynamical behavior, and the ability to work on different fuels with minor design changes. However, there would be no ambitious progress for gas turbines without reliable modeling and simulation. This paper describes a novel approach for modeling, identifying, and controlling a running gas turbine power plant. A simplified nonlinear model structure composed of s-domain transfer functions and nonlinear blocks represented by rate limiters, saturations, and look-up tables has been proposed. The model parameters have been optimized to fit real-world data. The verified model was then used to design a multiple PI/PD control to regulate the gas turbine via the inlet guide vane and fuel vales. The aim is to raise and stabilize the compressor’s differential pressure or pressure ratio, as well as raise the set-point of the temperature exhausted from the combustion turbine; as a result, energy efficiency has been improved by an average of 237.16 MWh saving in energy (or 8.96% reduction in fuel consumption) for a load range of 120 MW to 240 MW.
Read full abstract