Resistance to puncture by medical needles is becoming one of the most critical mechanical properties of rubber membranes, which are heavily used in protective gloves. Yet the intrinsic material parameters controlling the process of puncture by medical needles are still unknown. In a first paper presenting this two-part study, it has been shown that puncture by medical needles proceeds gradually as the needle cuts through the rubber membrane. The phenomenon of puncture by medical needles was revealed to involve contributions both from friction and fracture energy, in a similar way as for cutting. The use of a lubricant was not successful for removing the friction contribution for the determination of the material fracture energy corresponding to puncture by medical needles. This paper describes an alternative approach based on the application of a prestrain to the sample in a similar way as the work of Lake and Yeoh on cutting. A theoretical formulation for the tearing energy is derived from the theory of Rivlin and Thomas on the rupture of rubber. It is validated with a model extending expressions provided by the linear elastic fracture mechanics (LEFM) to include the non-linear stress–strain behavior displayed by rubber. For low values of the tearing energy, the total fracture energy, i.e. the sum of the puncture and tearing energies, is constant; the material fracture energy is obtained by extrapolation at zero tearing energy. This prestrain method allowed a complete removal of the friction contribution. The value obtained for the fracture energy corresponding to puncture by medical needles is found to be larger than the energy associated to cutting and smaller than that obtained for tearing. This can be related to the value of the crack tip diameter, which is, in that case, given by the needle cutting edge diameter.
Read full abstract