The icing on wind turbines reduces their aerodynamic performance and can cause other safety issues. Accordingly, in this paper, the de-icing characteristics of a wind turbine blade airfoil under different conditions are investigated using numerical simulation. The findings indicate that when the de-icing time is 10 s, the peak ice thickness on the leading edge of the airfoil surface decreases from 0.28 mm to 0.068 mm and from 0.77 mm to 0.45 mm at low (5 m/s) and high (15 m/s) wind speeds, respectively. This is due to the fact that the ice melting rate is much greater than the icing rate at low wind speeds, while the icing rate increases at high wind speeds. When the de-icing time is 20 s, ice accretion on the leading edge of the airfoil is completely melted. At a low heat flux (8000 W/m2) and high heat flux (12,000 W/m2), the peak ice thickness decreases by 31.2% and 64.9%, respectively. With an increase in de-icing time and heat flux, the peak thickness of runback ice increases. This is due to an increase in runback ice as a result of more ice melting on the leading edge of the airfoil. The surface temperature in the ice-free area is significantly higher than that in the ice-melting area, due to high thermal resistance in the ice-free area. This study will provide guidance for the thermal distribution and coating layout of a wind turbine blade airfoil to make the anti-/de-icing technology more efficient and energy-saving.