We conducted a molecular phylogenetic study of the Empidoidea, a diverse group of 10,000 species of true flies, with two major goals: to reconstruct a taxonomically complete and robustly supported phylogeny for the group and to use this information to assess several competing classifications for the clade. We amassed 3900+ nucleotides of coding data from the carbamoylphosphate synthase domain of the rudimentary locus (CAD) and 1200+ nucleotides from the large nuclear ribosomal subunit (28S) from 72 and 71 species, respectively, representing several orthorrhaphan and cyclorrhaphan families and all previously recognized empidoidean subfamilies. Independent and combined phylogenetic analyses of these data were conducted using parsimony, maximum likelihood, and Bayesian criteria. The combined matrix included 61 taxa for which both CAD and 28S sequences were obtained. Analyses of CAD first and second codon positions alone and when concatenated with 28S sequences yielded trees with similar and largely stable topologies. Analyses of 28S data alone supported many clades although resolution is limited by low sequence divergence. The following major empidoid clades were recovered with convincing support in a majority of analyses: Atelestidae, Empidoidea exclusive of Atelestidae, Hybotidae sensu lato, Dolichopodidae + Microphorinae (including Parathallassius), and Empididae sensu lato (including Brachystomatinae, Ceratomerinae, Clinocerinae, Empidinae, Hemerodromiinae, Oreogetoninae, and Trichopezinae). The branching arrangement among these four major clades was Atelestidae, Hybotidae, Dolichopodidae/Microphorinae, Empididae. Previously recognized subclades recovered with robust support included Hybotinae, Brachystomatinae, Tachydromiinae, Clinocerinae (in part), Hemerodromiinae, Empidinae, and Empidiini.