Multiple factors contribute to the development of perioperative neurocognitive disorders (PND). This study was designed to investigate whether Histone Deacetylase 6 (HDAC6) was involved in the formation of postoperative cognitive dysfunction in elderly mice by regulating the degree of acetylation of heat shock protein (HSP90) and related protein functions and quantities. C57BL/6J male mice were randomly divided into six groups: control naive (group Control), anesthesia (group Anesthesia), splenectomy surgery (group Surgery), splenectomy surgery plus dissolvent (group Vehicles), splenectomy surgery plus the inhibitor ACY-1215 (group Ricolinostat), and splenectomy surgery plus the inhibitor RU-486(group Mifepristone). After the mice were trained for Morris Water Maze (MWM) test for five days, anesthesia and operational surgery were carried out the following day. Cognitive function was assessed on the 1st, 3rd and 7th days post-surgery. The hippocampi were harvested on days 1, 3, and 7 post-surgeries for Western blots and ELISA assays. Mice with the splenectomy surgery displayed the activation of the hypothalamic-pituitary-adrenal axis (HPA-axis), marked an increase in adrenocorticotropic hormone (ACTH), glucocorticoid, mineralocorticoid at the molecular level and impaired spatial memory in the MWM test. The hippocampus of surgical groups showed a decrease in acetylated HSP90, a rise in glucocorticoid receptor (GR)-HSP90 association, and an increase in GR phosphorylation and translocation. HDAC6 was increased after the surgical treated. Using two specific inhibitors, HDAC6 inhibitor Ricolinostat (ACY-1215) and GR inhibitor Mifepristone (RU-486), can partially mitigate the effects caused by surgical operation. Abdominal surgery may impair hippocampal spatial memory, possibly through the HDAC6-triggered increase in the function of HSP90, consequently strengthening the negative role of steroids in cognitive function. Targeting HDAC6- HSP90/GR signaling may provide a potential avenue for the treatment of the impairment of cognitive function after surgery.
Read full abstract