BackgroundRecombinant tissue plasminogen activator (rt-PA) is a thrombolytic agent and essential in emergency medical care. Given recent supply shortages, the availability of biosimilar products is an urgent medical need. However, biosimilarity trials are difficult to perform in critically ill patients. ObjectivesThe aim of this pilot study was to investigate the pharmacokinetics and pharmacodynamics of low rt-PA doses to establish a model for testing proposed biosimilars in healthy volunteers. MethodsEight healthy volunteers received 0.02 to 0.05 mg/kg rt-PA on 3 study days; blood samples were obtained every 4 minutes after the end of the bolus infusion to measure rt-PA antigen levels by enzyme immunoassay, and the pharmacodynamics were assessed with rotational thromboelastometry. ResultsBolus infusion of low rt-PA doses was safe and well tolerated. Maximal plasma concentrations and the area under the curve increased dose-dependently. Time-concentration curves were clearly separated between the lower and the higher doses. As expected, the half-live of rt-PA was short (4.5-5 min), and representative for therapeutic doses. The intrasubject coefficient variations were moderate (<25%). Bolus infusion of rt-PA dose-dependently shortened lysis time and lysis onset time in both dose groups and caused maximum clot lysis of 100% in all participants. ConclusionIn conclusion, the pharmacokinetics of rt-PA was dose linear and displayed limited intrasubject variability even at subtherapeutic doses. The half-life and thus clearance of rt-PA was representative of full therapeutic doses. The lysis time was shortened in a dose and time-dependent fashion and was clearly distinguishable between doses. Thus, the model appears to be suitable and sensitive to test biosimilarity.
Read full abstract