Lipophilicity is one of the principal parameters that describe the pharmacokinetic behavior of a drug, including its absorption, distribution, metabolism, elimination, and toxicity. In this study, the lipophilicity and other physicochemical, pharmacokinetic, and toxicity properties that affect the bioavailability of newly synthesized dialkylaminoalkyldiquinothiazine hybrids as potential drug candidates are presented. The lipophilicity, as RM0, was determined experimentally by the RP-TLC method using RP18 plates and acetone-TRIS buffer (pH 7.4) as the mobile phase. The chromatographic parameters of lipophilicity were compared to computationally calculated partition coefficients obtained by various types of programs such as iLOGP, XLOGP3, WLOGP, MLOGP, SILCOS-IT, LogP, logP, and milogP. In addition, the selected ADMET parameters were determined in silico using the SwissADME and pkCSM platforms and correlated with the experimental lipophilicity descriptors. The results of the lipophilicity study confirm that the applied algorithms can be useful for the rapid prediction of logP values during the first stage of study of the examined drug candidates. Of all the algorithms used, the biggest similarity to the chromatographic value (RM0) for certain compounds was seen with iLogP. It was found that both the SwissADME and pkCSM web tools are good sources of a wide range of ADMET parameters that describe the pharmacokinetic profiles of the studied compounds and can be fast and low-cost tools in the evaluation of examined drug candidates during the early stages of the development process.
Read full abstract